

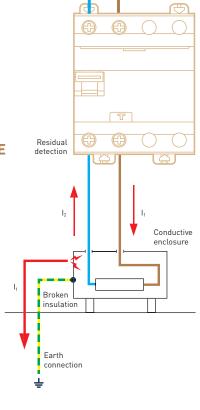
DX³ ID-B TYPE

RELIABLE PRODUCTS, WELL DESIGNED AND EASY TO WIRE UP

DX³ ID - B Type RCCBs integrate seamlessly into the Legrand family of DIN rail mounting products. They have the same aesthetic appearance and are compatible with the same control and signalling auxiliaries. Designed to bring users peace of mind, these products remain faithful to Legrand's philosophy: simple, intuitive, quick installation and, as ever, an uncompromising level of quality.

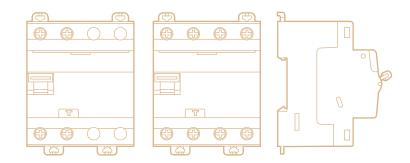
DX3 ID TYPE - B TYPE RANGE: A COMPETITIVE NEW RANGE WHICH PROTECTS UP TO 63 A

Conforming to standards: EN/IEC 61008-1 EN/IEC 62423		No Control of the Con	THE B I CONTACT OF THE STATE OF				No or B Solution to the state of the state o		
Cat.Nos	4 119 56	4 119 61	4 119 57	4 119 62	4 119 66	4 119 71	4 119 67	4 119 72	
No. of poles	2								
No. of modules	4					4	4		
Nominal current In (A)	4	0	63		40		63		
Sensitivity IΔ (mA)	30	300	30	300	30	300	30	300	


OPERATING PRINCIPLE OF RESIDUAL CURRENT DEVICES

An RCCB continuously measures the difference between the value of the incoming current (Phase) and the value of the outgoing current (Neutral). If a fault is present, the value of the incoming current is higher than that of the outgoing current. The difference between the two values constitutes the residual current (also called the fault current). The residual current triggers the RCD mechanism and the circuit is broken. The differential sensitivity corresponds to the maximum current threshold beyond which

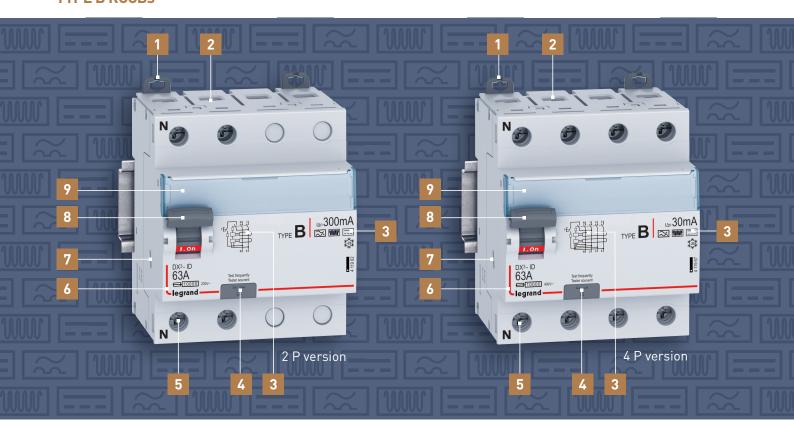
the RCCB trips.


EVERY APPLICATION HAS ITS OWN RESIDUAL CURRENT PROTECTION TYPE

	Residual current protection type					
Type of fault current detected	AC type	A type	F type	B type		
50/60 Hz AC residual currents	~	~	~	~		
Residual currents with DC component	×	~	V	V		
Enhanced immunity to unwanted tripping and high- frequency residual currents up to 1000 Hz	×	x	V	V		
Rectified pulsed DC residual currents from one or more phases and smoothed DC residual currents	×	×	×	V		

No fault: $I_1 = I_2$ Fault present: $I_1 \neq I_2$ where $I_1 > I_2$ $I_1 - I_2 = I_f$ (fault current)

AC type	Standard applications, in the majority of cases
A type	Specific applications: dedicated lines. They are particularly suitable for the following dedicated line applications: In residential properties, on specialised circuits: cooker, cooker hob, washing machine, in single-phase. Electric vehicles charging: mode 1 and mode 2 in single-phase and mode 3 (if 6 mA = protection device integrated in the charging station). Photovoltaic installation without storage with single insulation. In other installations, on circuits where class 1 equipment such as variable speed drives with frequency inverter may produce fault currents with DC components.
F type	These are products with enhanced immunity: they reduce cases of unwanted tripping and are recommended in the following special cases: • When loss of data would be detrimental: computer equipment power supply lines (data centers, banks, military instrumentation, airline reservation centre, etc) • When loss of operation would be detrimental (automated machines, medical instrumentation, freezers, etc) • Places where there is a high risk of lightning strike • Sites with lines subject to a great deal of interference or with long wiring runs • Circuits with a risk of appearance of high-frequency fault currents (up to 1000 Hz)
B type	These are products with enhanced immunity: they reduce cases of unwanted tripping and are recommended for: Installations powered by single-phase or three-phase rectifiers or with potential presence of DC fault currents: variable speed drives, lift motors, medical instrumentation, etc Electric vehicles charging: mode 1 and mode 2 in polyphase and mode 3 Three-phase photovoltaic installation with storage



SIMPLE, INTUITIVE AND QUICK INSTALLATION

- 1 Fixing claws for ease of mounting/demounting product on/off the DIN rail.
- 2 Cage terminals to ensure the longevity and quality of the connection. 50 mm² capacity (single-wire conductor). Can take terminal shield Cat.No 4 063 04 which makes it possible to seal the terminal screw heads and ensure they are inaccessible.
- Clear marking for quick product identification. Includes: the product catalogue number, main technical characteristics (residual current protection type, sensitivity, minimum ambient operating temperature) and the electrical diagram with identification of the terminals.
- 4 Manual test button for residual current function.
- Clamping screw for flat-blade (5.5 to 6.5 mm) or PZ2 Pozidriv screwdriver.

- Marking for quick identification of the product and its main technical characteristics, including the range name, the rating, the nominal voltage and short-circuit resistance (Icw).
- **Z**one reserved for fixing the control and signalling auxiliaries, common throughout the DX³ range.
- **B** Grey handle (specific to the switch function) with colour-coded marking for quick identification of the contact status:
- Red/I-on Green/O-off.
- Innovative label-holder for easy circuit identification:
 Easy opening, enhanced dust protection, label remains firmly in place during transport.

TYPE B RCCBs

RCCBs - DX3-ID

residual current circuit breakers 16 A to 100 A - AC, A, F and B types

Technical characteristics see e-catalogue

Conform to EN/IEC 61008 - 1, EN/IEC 62423 (B type and F type)

• Compatible with prong-type and fork type supply busbars

• AC type : detect sinusoidal AC residual currents

• A type : detect sinusoidal AC and pulsating DC residual currents

• F type (High immunity) : well detect AC and pulsating DC residual currents

Enhanced immunity to unwanted tripping in disturbed environments

Detection of high frequency fault currents

• B type : detect sinusoidal AC, pulsating DC and smooth DC residual currents

Enhanced immunity to unwanted tripping in disturbed environments

Can be equipped with DX³ signalling and remote tripping auxiliaries and motorised controls

Pack Cat.Nos 2-pole 230 Vo.									
Pack	Cat.Nos 2-pole 230 V \sim					Cat.Nos	4-pole - 400 V \sim - neutral on right-hand side		
	AC type □					AC type ┌─			
		Sensitivity (mA)	Nominal Rating In (A)	Number of modules		Vis/vis	Sensitivity (mA)	In (A)	Number of modules
1	4 115 00	10	16	2	1	4 117 02	30	25	4
1	4 115 04	30	25	2	1	4 117 03	30	40	4
1	4 115 05	30	40	2	1	4 117 04	30	63	4
1	4 115 06	30	63	2	1	4 117 05	30	80	4
1	4 115 07	30	80	2	1	4 117 12	100	25	4
1	4 115 08	30	100	2	1	4 117 13	100	40	4
1	4 115 14	100	25	2	1	4 117 14	100	63	4
1	4 115 15	100	40	2	1	4 117 15	100	80	4
1	4 115 16	100	63	2 2	1	4 117 22	300	25	4
1	4 115 17	100	80	2	1	4 117 23	300	40	4
1	4 115 17	300	25	2 2	1	4 117 24	300	63	4
1	4 115 24	300	40	2	1	4 117 24	300	80	4
1	4 115 25	300	63	2	1	4 117 25	300 selective	40	4
1	4 115 20	300	80	2	1	4 117 45	300 selective	63	4
1	4 115 27	300	100	2	1	4 117 40	500 selective 500	25	4
1	4 115 26	100 selective	100	2 2 2 2 2	1	4 117 32	500	40	4
1	4 115 37			2	1				
1	4 115 43	300 selective	63	2	1	4 117 34	500 500	63 80	4 4
		A type ≅			'	4 117 35	500	00	4
1	4 115 50	10	16	2			A type 🔀		
1	4 115 54	30	25	2	1	4 117 59	30	25	4
1	4 115 55	30	40	2	1	4 117 60	30	40	4
1	4 115 56	30	63	2	1	4 117 61	30	63	4
1	4 115 57	30	80	2	1	4 117 62	30	80	4
1	4 115 69	300	25	2 2	1	4 117 63	30	100	4
1	4 115 70	300	40	2	1	4 117 69	100	25	4
1	4 115 71	300	63	2	1	4 117 70	100	40	4
1	4 115 72	300	80	2	1	4 117 71	100	63	4
				_	1	4 117 72	100	80	4
		F type (old Hpi		2	1	4 117 73	100	100	4
1	4 115 90	30	25	2	1	4 117 79	300	25	4
1	4 115 91	30	40	2	1	4 117 80	300	40	4
1	4 115 92	30	63	2	1	4 117 81	300	63	4
		2 0010 220 1/	o noutral and	off bond old-	1	4 117 82	300	80	4
		2-poie - 230 v	\sim - neutral on I	ert-nand side	1	4 117 83	300	100	4
		B type ⊡	=1		1	4 118 00	300 selective	40	4
		Sensitivity (mA)	In (A)	Number of modules	1	4 118 01	300 selective	63	4
4	4 119 56	30	40		1	4 117 89	500	25	4
1				4	1	4 117 90	500	40	4
	4 119 57	30	63	4	1	4 117 91	500	63	4
1 1	4 119 61	300	40	4 4	1	4 117 92	500	80	4
	4 119 62	300	63	4	1	4 117 93	500	100	4
					,	7 111 33	300	100	· -
							4-pole - 400 V	\sim - neutral on	left-hand side

		4-pole - 400 V \sim - neutral on left-hand side						
		B type						
		Sensitivity (mA)	In (A)	Number of modules				
1	4 119 66	30	40	4				
1	4 119 67	30	63	4				
1	4 119 71	300	40	4				
1	4 119 72	300	63	4				

Llegrand

Head Office

and International Department 87045 Limoges Cedex - France Tel: +33(0)5 55 06 87 87 Fax: +33(0)5 55 06 74 55